System Analysis for Construction
Work Plan

Justin Chase
Engineering Supervisor
Great Lakes Energy
Great Lakes Energy (GLE)

- 26 counties in the lower peninsula of Michigan
- 125,000 meters
- 14,000 miles of line
- 82 substations
- 300 MW peak
Agenda

- Rural Utility Service (RUS) Construction Work Plan (CWP) Guidelines
- Utility Design Standards
- Load Balance
- Voltage Analysis
- Overloaded Devices
- Seasonal Load Swings
RUS CWP Guidelines

• Bulletin 172D-101B Construction Work Plan Guide
 – Use of CWP
 – Preparation
 – Determining Construction Requirements
 – The CWP Report
Use of CWP

• Prepared every 2-4 years
 – GLE uses a 3 year CWP
 – Takes about a year to complete

• Include projects regardless of financing source

• Reference for annual construction budgets

• Used as engineering support for RUS loan application
Preparation

• Review data
 – System and substation peaks
 • Adjust for any load transfers
 – Design standards
 – Long Range Plan (LRP) typically 20 year
 • Refresh after 10 years
 – Operations and Maintenance (O&M) Report
 – Engineering model
Determining Construction Requirements

- New consumers and anticipated loads
- Substation peak projected loads
- Load allocation and model analysis
 - Create base load first and verify before projecting
- Project recommendations
 - Alternative solutions
The CWP Report

- Documentation of the CWP study
- Executive summary
- Historical and projected data
- Project lists and costs
- Maps
Agenda

• RUS CWP Guidelines
• Utility Design Standards
• Load Balance
• Voltage Analysis
• Overloaded Devices
• Seasonal Load Swings
Utility Design Standards

• RUS has recommendations but each utility should develop their own unique standards
 – Number of voltage regulation after substation
 • Max of 2
 – When to use regulators vs upgrade line
 • GLE has an aging system so line rebuilds are used when copper weld wire is upline of voltage violation
Utility Design Standards (cont.)

– Max load on single phase line
 • GLE upgrades line to three phase after 40 amps is projected. Helps with load balancing and sectionalizing

– Device loading
 • 100% for regulators
 • 70% for reclosers

– Voltage requirements
 • ANSI C84.1-2016
 • Primary voltage between 126 - 118
Agenda

- RUS CWP Guidelines
- Utility Design Standards
- Load Balance
- Voltage Analysis
- Overloaded Devices
- Seasonal Load Swings
Load Balance

• Should be the first part of the system analysis
• Large imbalances affect losses and voltage levels
• Feeder voltage issues can be fixed just by balancing load
• Can be challenging on residential feeders
Load Balance (cont.)

• GLE will balance substations based on peak loading
 – Can cause substations to be unbalance due to seasonal load swings

• GLE standards
 – 10% on substations
 – 15% on feeders
Single Phase Loading

- GLE typically tries to keep single phase loading down to 40 amps.
- Custom Query built to find single phase devices with over 40 amps
Single Phase Loading (cont.)
Load Balance Analysis

• Great tool for easily balancing load on feeder

• Requires engineering and field review
 – Not ideal to jumper across pole

• Analysis Manager can be used to setup preference
Load Balance Analysis (cont.)

A to C

C to B

Analysis Manager

Load Balance Colors

File

Analysis Manager

Load Balance Colors

File
<table>
<thead>
<tr>
<th>Placement Order</th>
<th>Move Tap Beginning</th>
<th>Placement</th>
<th>Move Tap with Element</th>
<th>--Configuration--</th>
<th>Before KW Loss</th>
<th>After KW Loss</th>
<th>Savings</th>
<th>--After Move Amps--</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OR00000000000000</td>
<td>A</td>
<td>C</td>
<td>123.77</td>
<td>116.80</td>
<td>6.97</td>
<td>37.7</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>OR00000000000000</td>
<td>A</td>
<td>B</td>
<td>116.80</td>
<td>116.80</td>
<td>1.45</td>
<td>10.8</td>
<td></td>
</tr>
</tbody>
</table>
Agenda

• RUS CWP Guidelines
• Utility Design Standards
• Load Balance
• Voltage Analysis
• Overloaded Devices
• Seasonal Load Swings
Voltage Analysis

• After the system is balanced, the next step is to look for voltage violations
• This can be done using the Voltage Drop analysis
• Analysis Manager can be used to setup preference
Voltage Analysis (cont.)

Voltage Drop Settings
- Voltage Drop Solution:
 - Balanced
 - Unbalanced

Settings:
- Maximum Number of Iterations: 20
- Voltage Drop Tolerance: 0.01 0000%
- Base Output Voltage: 120.0V
- Clamp Constant kVA Load Voltage: 0.790 PU
- Initiate Voltages At: Last Case

Voltage Drop Colors
- Voltage Problems:
 - No Problems
 - Generators outside of kvar limits
 - Voltage UNDER 118 Volts
 - Voltage ExCEEDS 128 Volts
 - Use gradient for other voltages
 - Power Factor UNDER 80 %
- When coloring give priority to:

Selected Elements:
- Screen Background

Refresh Colors
Run
Run & Close
Close
• In this example there is a radial tap that has low voltage
• The main line is 336 ACSR and the tap is 1/0 ACSR
Voltage Analysis (cont.)

- Since the wire size and age is adequate, a voltage regulator will be installed.
- GLE would typically install it around the 119V range.
 - Allows for future load growth.
Voltage Analysis (cont.)

• In this example there is a feeder with low voltage at the end
• The main line is 4/0 ACSR and the tap is 8A CWC
Voltage Analysis (cont.)

- Since the conductor is old cooper weld, the line would be upgraded to fix the low voltage.
- 2 miles of line needs to be rebuild to fix the voltage but since this feeder ties to another, the full 4 miles will be rebuild for backfeeding capacity.
Agenda

- RUS CWP Guidelines
- Utility Design Standards
- Load Balance
- Voltage Analysis
- Overloaded Devices
- Seasonal Load Swings
Overloaded Devices

• Good time to review with projected loading
• Recloser and switchgear upgrades become projects
• Fuses are technically not part of the CWP
• Couple different ways to identify
 – Visual
 – Tabular
Overloaded Devices - Visual

- Voltage Drop Analysis Manager - Capacity Problems
 - Choose capacity and color
- Display Options - Circuit Element Symbols
 - Make devices larger
Overloaded Devices - Tabular

• Create query
 – Include devices
 – Capacity % >100
• Verify Current Rating is setup properly
Current Rating

- Defined in EQDB
- Can be setup to use Light Table
- Based on TCC but can be changed
Agenda

- RUS CWP Guidelines
- Utility Design Standards
- Load Balance
- Voltage Analysis
- Overloaded Devices
- Seasonal Load Swings
Seasonal Load Swings

• If only the substation peak is used, seasonal load swings can be overlooked
• GLE analyzes system for summer and winter peaks regardless of substation peak season
• Prime examples are substations that peak in the winter but have seasonal vacation homes or campgrounds that have no winter load
Questions?

Justin Chase
Engineering Supervisor
Great Lakes Energy
jchase@glenergy.com